oneflow.nn.CoinFlip¶
-
class
oneflow.nn.
CoinFlip
(batch_size=1, random_seed=None, probability=0.5, device=None, placement=None, sbp=None)¶ Generates random boolean values following a bernoulli distribution.
The probability of generating a value 1 (true) is determined by the
probability
argument.The shape of the generated data can be either specified explicitly with a
shape
argument, or chosen to match the shape of the input, if provided. If none are present, a single value per sample is generated.The documentation is referenced from: https://docs.nvidia.com/deeplearning/dali/user-guide/docs/supported_ops_legacy.html#nvidia.dali.ops.CoinFlip.
- Parameters
batch_size (int, optional) – Maximum batch size of the pipeline. Negative values for this parameter are invalid - the default value may only be used with serialized pipeline (the value stored in serialized pipeline is used instead). In most cases, the actual batch size of the pipeline will be equal to the maximum one. Default: 1
random_seed (int, optional) – Random seed. Default: None
probability (float, optional) – Probability of value 1. Default: 0.5
device (oneflow.device, optional) – Desired device of returned tensor. Default: if None, uses the current device for the default tensor type.
placement (oneflow.placement, optional) – Desired placement of returned global tensor. Default: if None, the returned tensor is local one using the argument device.
sbp (oneflow.sbp.sbp or tuple of oneflow.sbp.sbp, optional) – Desired sbp descriptor of returned global tensor. Default: if None, the returned tensor is local one using the argument device.
-
__init__
(batch_size: int = 1, random_seed: Optional[int] = None, probability: float = 0.5, device: Optional[Union[str, oneflow._oneflow_internal.device]] = None, placement: Optional[oneflow._oneflow_internal.placement] = None, sbp: Optional[Union[oneflow._oneflow_internal.sbp.sbp, List[oneflow._oneflow_internal.sbp.sbp]]] = None)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__call__
(*args, **kwargs)Call self as a function.
__delattr__
(name)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattr__
(name)__getattribute__
(name, /)Return getattr(self, name).
__getstate__
()__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
__init__
([batch_size, random_seed, …])Initialize self.
__init_subclass__
This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__ne__
(value, /)Return self!=value.
__new__
(**kwargs)Create and return a new object.
__reduce__
()Helper for pickle.
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value)Implement setattr(self, name, value).
__setstate__
(state)__sizeof__
()Size of object in memory, in bytes.
__str__
()Return str(self).
__subclasshook__
Abstract classes can override this to customize issubclass().
_apply
(fn)_get_backward_hooks
()Returns the backward hooks for use in the call function.
_get_name
()_load_from_state_dict
(state_dict, prefix, …)_maybe_warn_non_full_backward_hook
(args, …)_named_members
(get_members_fn[, prefix, recurse])_register_load_state_dict_pre_hook
(hook[, …])These hooks will be called with arguments: state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, before loading state_dict into self.
_register_state_dict_hook
(hook)These hooks will be called with arguments: self, state_dict, prefix, local_metadata, after the state_dict of self is set.
_save_to_state_dict
(destination, prefix, …)_shallow_repr
()add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
()half
()Casts all floating point parameters and buffers to
half
datatype.load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook)Registers a forward hook on the module.
register_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_full_backward_hook
(hook)Registers a backward hook on the module.
register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_consistent
(*args, **kwargs)This interface is no longer available, please use
oneflow.nn.Module.to_global()
instead.to_global
([placement, sbp])Convert the parameters and buffers to global.
to_local
()train
([mode])Sets the module in training mode.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
Attributes
_grad_t
alias of Union[Tuple[oneflow.Tensor, …], oneflow.Tensor]