class oneflow.nn.ConvTranspose1d(in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int]], stride: Union[int, Tuple[int]] = 1, padding: Union[int, Tuple[int]] = 0, output_padding: Union[int, Tuple[int]] = 0, groups: int = 1, bias: bool = True, dilation: Union[int, Tuple[int]] = 1, padding_mode: str = 'zeros')

Applies a 1D transposed convolution operator over an input image composed of several input planes.

This module can be seen as the gradient of Conv1d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).

This module supports TensorFloat32.

  • stride controls the stride for the cross-correlation.

  • padding controls the amount of implicit zero padding on both sides for dilation * (kernel_size - 1) - padding number of points. See note below for details.

  • output_padding controls the additional size added to one side of the output shape. See note below for details.

  • dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.


The padding argument effectively adds dilation * (kernel_size - 1) - padding amount of zero padding to both sizes of the input. This is set so that when a Conv1d and a ConvTranspose1d are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, when stride > 1, Conv1d maps multiple input shapes to the same output shape. output_padding is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note that output_padding is only used to find output shape, but does not actually add zero-padding to output.


In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = True. Please see the notes on randomness for background.

  • in_channels (int) – Number of channels in the input image

  • out_channels (int) – Number of channels produced by the convolution

  • kernel_size (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of the input. Default: 0

  • output_padding (int or tuple, optional) – Additional size added to one side of the output shape. Default: 0

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

  • Input: \((N, C_{in}, L_{in})\)

  • Output: \((N, C_{out}, L_{out})\) where

    \[L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times (\text{kernel_size} - 1) + \text{output_padding} + 1\]

the learnable weights of the module of shape \((\\text{in\_channels}, \frac{\\text{out\\_channels}}{\text{groups}},\) \(\\text{kernel\\_size})\). The values of these weights are sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{groups}{C_\text{out} * \\text{kernel\\_size}}\)




the learnable bias of the module of shape (out_channels). If bias is True, then the values of these weights are sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{groups}{C_\text{out} * \\text{kernel\\_size}}\)