oneflow.nn.CropMirrorNormalize¶
-
class
oneflow.nn.
CropMirrorNormalize
(color_space='BGR', output_layout='NCHW', crop_h=0, crop_w=0, crop_pos_y=0.5, crop_pos_x=0.5, mean=[0.0], std=[1.0], output_dtype=oneflow.float)¶ Performs fused cropping, normalization, format conversion (NHWC to NCHW) if desired, and type casting.
Normalization takes the input images and produces the output by using the following formula:
\[output = (input - mean) / std\]Note
If no cropping arguments are specified, only mirroring and normalization will occur.
This operator allows sequence inputs and supports volumetric data.
The documentation is referenced from: https://docs.nvidia.com/deeplearning/dali/user-guide/docs/supported_ops_legacy.html#nvidia.dali.ops.CropMirrorNormalize.
- Parameters
color_space (str, optional) – The color space of the input image. Default: “BGR”
output_layout (str, optional) – Tensor data layout for the output. Default: “NCHW”
crop_h (int, optional) – Cropping the window height (in pixels). Default: 0
crop_w (int, optional) – Cropping window width (in pixels). Default: 0
crop_pos_y (float, optional) – Normalized (0.0 - 1.0) vertical position of the start of the cropping window (typically, the upper left corner). Default: 0.5
crop_pos_x (float, optional) – Normalized (0.0 - 1.0) horizontal position of the cropping window (upper left corner). Default: 0.5
mean (float or list of float, optional) – Mean pixel values for image normalization. Default: [0.0],
std (float or list of float, optional) – Standard deviation values for image normalization. Default: [1.0]
output_dtype (oneflow.dtype, optional) – Output data type. Default:
oneflow.float
-
__init__
(color_space: str = 'BGR', output_layout: str = 'NCHW', crop_h: int = 0, crop_w: int = 0, crop_pos_y: float = 0.5, crop_pos_x: float = 0.5, mean: Sequence[float] = [0.0], std: Sequence[float] = [1.0], output_dtype: oneflow._oneflow_internal.dtype = oneflow.float32)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__call__
(*args, **kwargs)Call self as a function.
__delattr__
(name)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattr__
(name)__getattribute__
(name, /)Return getattr(self, name).
__getstate__
()__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
__init__
([color_space, output_layout, …])Initialize self.
__init_subclass__
This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__ne__
(value, /)Return self!=value.
__new__
(**kwargs)Create and return a new object.
__reduce__
()Helper for pickle.
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value)Implement setattr(self, name, value).
__setstate__
(state)__sizeof__
()Size of object in memory, in bytes.
__str__
()Return str(self).
__subclasshook__
Abstract classes can override this to customize issubclass().
_apply
(fn)_get_backward_hooks
()Returns the backward hooks for use in the call function.
_get_name
()_load_from_state_dict
(state_dict, prefix, …)_maybe_warn_non_full_backward_hook
(args, …)_named_members
(get_members_fn[, prefix, recurse])_register_load_state_dict_pre_hook
(hook[, …])These hooks will be called with arguments: state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, before loading state_dict into self.
_register_state_dict_hook
(hook)These hooks will be called with arguments: self, state_dict, prefix, local_metadata, after the state_dict of self is set.
_save_to_state_dict
(destination, prefix, …)_shallow_repr
()add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(input[, mirror])half
()Casts all floating point parameters and buffers to
half
datatype.load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook)Registers a forward hook on the module.
register_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_full_backward_hook
(hook)Registers a backward hook on the module.
register_parameter
(name, param)Adds a parameter to the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_consistent
(*args, **kwargs)This interface is no longer available, please use
oneflow.nn.Module.to_global()
instead.to_global
([placement, sbp])Convert the parameters and buffers to global.
to_local
()train
([mode])Sets the module in training mode.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
Attributes
_grad_t
alias of Union[Tuple[oneflow.Tensor, …], oneflow.Tensor]