oneflow.nn.BatchNorm2d¶
-
class
oneflow.nn.
BatchNorm2d
(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)¶ Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .
\[y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta\]The mean and standard-deviation are calculated per-dimension over the mini-batches and \(\gamma\) and \(\beta\) are learnable parameter vectors of size C (where C is the input size). By default, the elements of \(\gamma\) are set to 1 and the elements of \(\beta\) are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False).
Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default
momentum
of 0.1.If
track_running_stats
is set toFalse
, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.Note
This
momentum
argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is \(\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t\), where \(\hat{x}\) is the estimated statistic and \(x_t\) is the new observed value.Because the Batch Normalization is done over the C dimension, computing statistics on (N, H, W) slices, it’s common terminology to call this Spatial Batch Normalization.
- Parameters
num_features – \(C\) from an expected input of size \((N, C, H, W)\)
eps – a value added to the denominator for numerical stability. Default: 1e-5
momentum – the value used for the running_mean and running_var computation. Can be set to
None
for cumulative moving average (i.e. simple average). Default: 0.1affine – a boolean value that when set to
True
, this module has learnable affine parameters. Default:True
track_running_stats – a boolean value that when set to
True
, this module tracks the running mean and variance, and when set toFalse
, this module does not track such statistics, and initializes statistics buffersrunning_mean
andrunning_var
asNone
. When these buffers areNone
, this module always uses batch statistics. in both training and eval modes. Default:True
- Shape:
Input: \((N, C, H, W)\)
Output: \((N, C, H, W)\) (same shape as input)
For example:
>>> import oneflow as flow >>> import numpy as np >>> x = flow.Tensor(np.random.randn(4, 2, 8, 3)) >>> m = flow.nn.BatchNorm2d(num_features=2, eps=1e-5, momentum=0.1) >>> y = m(x)
-
__init__
(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__call__
(*args, **kwargs)Call self as a function.
__delattr__
(name, /)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattr__
(name)__getattribute__
(name, /)Return getattr(self, name).
__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
__init__
(num_features[, eps, momentum, …])Initialize self.
__init_subclass__
This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__ne__
(value, /)Return self!=value.
__new__
(**kwargs)Create and return a new object.
__reduce__
()Helper for pickle.
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value)Implement setattr(self, name, value).
__sizeof__
()Size of object in memory, in bytes.
__str__
()Return str(self).
__subclasshook__
Abstract classes can override this to customize issubclass().
_apply
(fn[, applied_dict])_check_input_dim
(input)_get_name
()_load_from_state_dict
(state_dict, prefix, …)_named_members
(get_members_fn[, prefix, recurse])_save_to_state_dict
(destination, prefix, …)_shallow_repr
()add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x)half
()Casts all floating point parameters and buffers to
half
datatype.load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook)Registers a forward hook on the module.
register_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_parameter
(name, param)Adds a parameter to the module.
reset_parameters
()reset_running_stats
()state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
to
([device])Moves the parameters and buffers.
to_consistent
(*args, **kwargs)This interface is no longer available, please use
oneflow.nn.Module.to_global()
instead.to_global
([placement, sbp])Convert the parameters and buffers to global.
train
([mode])Sets the module in training mode.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.