oneflow.nn.RNN

class oneflow.nn.RNN(*args, **kwargs)

Applies a multi-layer Elman RNN with tanhtanh or text{ReLU}ReLU non-linearity to an input sequence.

For each element in the input sequence, each layer computes the following function:

function:

\[h_t = \tanh(W_{ih} x_t + b_{ih} + W_{hh} h_{(t-1)} + b_{hh})\]

where \(h_t\) is the hidden state at time t, \(x_t\) is the input at time t, and \(h_{(t-1)}\) is the hidden state of the previous layer at time t-1 or the initial hidden state at time 0. If nonlinearity is 'relu', then \(\text{ReLU}\) is used instead of \(\tanh\).

The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/1.10/generated/torch.nn.RNN.html.

Parameters
  • input_size – The number of expected features in the input x

  • hidden_size – The number of features in the hidden state h

  • num_layers – Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1

  • nonlinearity – The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'

  • bias – If False, then the layer does not use bias weights b_ih and b_hh. Default: True

  • batch_first – If True, then the input and output tensors are provided as (batch, seq, feature) instead of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs sections below for details. Default: False

  • dropout – If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: 0

  • bidirectional – If True, becomes a bidirectional RNN. Default: False

Inputs: input, h_0
  • input: tensor of shape \((L, N, H_{in})\) when batch_first=False or \((N, L, H_{in})\) when batch_first=True containing the features of the input sequence.

  • h_0: tensor of shape \((D * \text{num\_layers}, N, H_{out})\) containing the initial hidden state for each element in the batch. Defaults to zeros if not provided.

where:

\[\begin{split}\begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input_size} \\ H_{out} ={} & \text{hidden_size} \end{aligned}\end{split}\]
Outputs: output, h_n
  • output: tensor of shape \((L, N, D * H_{out})\) when batch_first=False or \((N, L, D * H_{out})\) when batch_first=True containing the output features (h_t) from the last layer of the RNN, for each t.

  • h_n: tensor of shape \((D * \text{num\_layers}, N, H_{out})\) containing the final hidden state for each element in the batch.

weight_ih_l[k]

the learnable input-hidden weights of the k-th layer, of shape (hidden_size, input_size) for k = 0. Otherwise, the shape is (hidden_size, num_directions * hidden_size)

weight_hh_l[k]

the learnable hidden-hidden weights of the k-th layer, of shape (hidden_size, hidden_size)

bias_ih_l[k]

the learnable input-hidden bias of the k-th layer, of shape (hidden_size)

bias_hh_l[k]

the learnable hidden-hidden bias of the k-th layer, of shape (hidden_size)

Note

All the weights and biases are initialized from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{1}{\text{hidden\_size}}\)

Note

For bidirectional RNNs, forward and backward are directions 0 and 1 respectively. Example of splitting the output layers when batch_first=False: output.view((seq_len, batch, num_directions, hidden_size)).

For example:

>>> import oneflow as flow
>>> import numpy as np
>>> rnn = flow.nn.RNN(10, 20, 2)
>>> input = flow.tensor(np.random.randn(5, 3, 10), dtype=flow.float32)
>>> h0 = flow.tensor(np.random.randn(2, 3, 20), dtype=flow.float32)
>>> output, hn = rnn(input, h0)
>>> output.size()
oneflow.Size([5, 3, 20])
__init__(*args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

Methods

__call__(*args, **kwargs)

Call self as a function.

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattr__(name)

__getattribute__(name, /)

Return getattr(self, name).

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init__(*args, **kwargs)

Initialize self.

__init_subclass__

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__ne__(value, /)

Return self!=value.

__new__(**kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(attr, value)

Implement setattr(self, name, value).

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_apply(fn[, applied_dict])

_get_name()

_load_from_state_dict(state_dict, prefix, …)

_named_members(get_members_fn[, prefix, recurse])

_save_to_state_dict(destination, prefix, …)

_shallow_repr()

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

buffers([recurse])

Returns an iterator over module buffers.

check_forward_args(input, hidden, batch_sizes)

check_hidden_size(hx, expected_hidden_size)

check_input(input, batch_sizes)

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(input[, hx])

get_expected_hidden_size(input, batch_sizes)

half()

Casts all floating point parameters and buffers to half datatype.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

permute_hidden(hx, permutation)

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook)

Registers a forward hook on the module.

register_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_parameter(name, param)

Adds a parameter to the module.

reset_parameters()

state_dict([destination, prefix, keep_vars])

Returns a dictionary containing a whole state of the module.

to([device])

Moves the parameters and buffers.

to_consistent(*args, **kwargs)

This interface is no longer available, please use oneflow.nn.Module.to_global() instead.

to_global([placement, sbp])

Convert the parameters and buffers to global.

train([mode])

Sets the module in training mode.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.

Attributes

all_weights