oneflow.nn.MaxPool3d

class oneflow.nn.MaxPool3d(kernel_size: Union[int, Tuple[int, int, int]], stride: Optional[Union[int, Tuple[int, int, int]]] = None, padding: Union[int, Tuple[int, int, int]] = 0, dilation: Union[int, Tuple[int, int, int]] = 1, return_indices: bool = False, ceil_mode: bool = False)

Applies a 3D max pooling over an input signal composed of several input planes.

The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/1.10/generated/torch.nn.MaxPool3d.html.

In the simplest case, the output value of the layer with input size \((N, C, D, H, W)\), output \((N, C, D_{out}, H_{out}, W_{out})\) and kernel_size \((kD, kH, kW)\) can be precisely described as:

\[\begin{split}\begin{aligned} \text{out}(N_i, C_j, d, h, w) ={} & \max_{k=0, \ldots, kD-1} \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \text{input}(N_i, C_j, \text{stride[0]} \times d + k, \text{stride[1]} \times h + m, \text{stride[2]} \times w + n) \end{aligned}\end{split}\]

If padding is non-zero, then the input is implicitly minimum value on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

Note

When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.

The parameters kernel_size, stride, padding, dilation can either be:

  • a single int – in which case the same value is used for the depth, height and width dimension

  • a tuple of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension

Parameters
  • kernel_size – the size of the window to take a max over

  • stride – the stride of the window. Default value is kernel_size

  • padding – implicit minimum value padding to be added on all three sides

  • dilation – a parameter that controls the stride of elements in the window

  • return_indices – if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool3d later

  • ceil_mode – when True, will use ceil instead of floor to compute the output shape

Shape:
  • Input: \((N, C, D_{in}, H_{in}, W_{in})\)

  • Output: \((N, C, D_{out}, H_{out}, W_{out})\), where

    \[D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor\]
    \[H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor\]
    \[W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times (\text{kernel_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor\]

For example:

import oneflow as flow
import numpy as np

of_maxpool3d = flow.nn.MaxPool3d(kernel_size=3, padding=1, stride=1)
x = flow.Tensor(np.random.randn(1, 4, 4, 4, 4))
y = of_maxpool3d(x)
y.shape
oneflow.Size([1, 4, 4, 4, 4])
__init__(kernel_size: Union[int, Tuple[int, int, int]], stride: Optional[Union[int, Tuple[int, int, int]]] = None, padding: Union[int, Tuple[int, int, int]] = 0, dilation: Union[int, Tuple[int, int, int]] = 1, return_indices: bool = False, ceil_mode: bool = False)

Initialize self. See help(type(self)) for accurate signature.

Methods

__call__(*args, **kwargs)

Call self as a function.

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattr__(name)

__getattribute__(name, /)

Return getattr(self, name).

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init__(kernel_size[, stride, padding, …])

Initialize self.

__init_subclass__

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__ne__(value, /)

Return self!=value.

__new__(**kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value)

Implement setattr(self, name, value).

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_apply(fn[, applied_dict])

_get_name()

_load_from_state_dict(state_dict, prefix, …)

_named_members(get_members_fn[, prefix, recurse])

_save_to_state_dict(destination, prefix, …)

_shallow_repr()

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(x)

half()

Casts all floating point parameters and buffers to half datatype.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook)

Registers a forward hook on the module.

register_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_parameter(name, param)

Adds a parameter to the module.

state_dict([destination, prefix, keep_vars])

Returns a dictionary containing a whole state of the module.

to([device])

Moves the parameters and buffers.

to_consistent(*args, **kwargs)

This interface is no longer available, please use oneflow.nn.Module.to_global() instead.

to_global([placement, sbp])

Convert the parameters and buffers to global.

train([mode])

Sets the module in training mode.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.