oneflow.nn.Upsample

class oneflow.nn.Upsample(size: Optional[Union[int, Tuple[int, ]]] = None, scale_factor: Optional[Union[float, Tuple[float, ]]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None)

Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.

The input data is assumed to be of the form minibatch x channels x [optional depth] x [optional height] x width. Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor.

The algorithms available for upsampling are nearest neighbor and linear, bilinear, bicubic and trilinear for 3D, 4D and 5D input Tensor, respectively.

One can either give a scale_factor or the target output size to calculate the output size. (You cannot give both, as it is ambiguous)

The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/1.10/_modules/torch/nn/modules/upsampling.html.

Parameters
  • size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], optional) – output spatial sizes

  • scale_factor (float or Tuple[float] or Tuple[float, float] or Tuple[float, float, float], optional) – multiplier for spatial size. Has to match input size if it is a tuple.

  • mode (str, optional) – the upsampling algorithm: one of 'nearest', 'linear', 'bilinear', 'bicubic' and 'trilinear'. Default: 'nearest'

  • align_corners (bool, optional) – if True, the corner pixels of the input and output tensors are aligned, and thus preserving the values at those pixels. This only has effect when mode is 'linear', 'bilinear', or 'trilinear'. Default: False

Shape:
  • Input: \((N, C, W_{in})\), \((N, C, H_{in}, W_{in})\) or \((N, C, D_{in}, H_{in}, W_{in})\)

  • Output: \((N, C, W_{out})\), \((N, C, H_{out}, W_{out})\) or \((N, C, D_{out}, H_{out}, W_{out})\), where

\[D_{out} = \left\lfloor D_{in} \times \text{scale_factor} \right\rfloor\]
\[H_{out} = \left\lfloor H_{in} \times \text{scale_factor} \right\rfloor\]
\[W_{out} = \left\lfloor W_{in} \times \text{scale_factor} \right\rfloor\]

Warning

With align_corners = True, the linearly interpolating modes (linear, bilinear, bicubic, and trilinear) don’t proportionally align the output and input pixels, and thus the output values can depend on the input size. This was the default behavior for these modes up to version 0.3.1. Since then, the default behavior is align_corners = False. See below for concrete examples on how this affects the outputs.

Note

If you want downsampling/general resizing, you should use interpolate().

For example:

>>> import numpy as np
>>> import oneflow as flow

>>> input = flow.tensor(np.arange(1, 5).reshape((1, 1, 2, 2)), dtype=flow.float32)
>>> input = input.to("cuda")
>>> m = flow.nn.Upsample(scale_factor=2.0, mode="nearest")
>>> output = m(input)
>>> output 
tensor([[[[1., 1., 2., 2.],
          ...
          [3., 3., 4., 4.]]]], device='cuda:0', dtype=oneflow.float32)
__init__(size: Optional[Union[int, Tuple[int, ]]] = None, scale_factor: Optional[Union[float, Tuple[float, ]]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None)

Initialize self. See help(type(self)) for accurate signature.

Methods

__call__(*args, **kwargs)

Call self as a function.

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattr__(name)

__getattribute__(name, /)

Return getattr(self, name).

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init__([size, scale_factor, mode, …])

Initialize self.

__init_subclass__

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__ne__(value, /)

Return self!=value.

__new__(**kwargs)

Create and return a new object.

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value)

Implement setattr(self, name, value).

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_apply(fn[, applied_dict])

_get_name()

_load_from_state_dict(state_dict, prefix, …)

_named_members(get_members_fn[, prefix, recurse])

_save_to_state_dict(destination, prefix, …)

_shallow_repr()

add_module(name, module)

Adds a child module to the current module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self.

buffers([recurse])

Returns an iterator over module buffers.

children()

Returns an iterator over immediate children modules.

cpu()

Moves all model parameters and buffers to the CPU.

cuda([device])

Moves all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Sets the module in evaluation mode.

extra_repr()

Set the extra representation of the module

float()

Casts all floating point parameters and buffers to float datatype.

forward(x)

half()

Casts all floating point parameters and buffers to half datatype.

load_state_dict(state_dict[, strict])

Copies parameters and buffers from state_dict into this module and its descendants.

modules()

Returns an iterator over all modules in the network.

named_buffers([prefix, recurse])

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix])

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse])

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Returns an iterator over module parameters.

register_buffer(name, tensor[, persistent])

Adds a buffer to the module.

register_forward_hook(hook)

Registers a forward hook on the module.

register_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_parameter(name, param)

Adds a parameter to the module.

state_dict([destination, prefix, keep_vars])

Returns a dictionary containing a whole state of the module.

to([device])

Moves the parameters and buffers.

to_consistent(*args, **kwargs)

This interface is no longer available, please use oneflow.nn.Module.to_global() instead.

to_global([placement, sbp])

Convert the parameters and buffers to global.

train([mode])

Sets the module in training mode.

zero_grad([set_to_none])

Sets gradients of all model parameters to zero.